Data mining techniques are the result of a long process of research and product development. This evolution began when business data were first stored on computers, continued with improvements in data access, and more recently, generated technologies that allow users to navigate through their data in real time. Data mining takes this evolutionary process beyond retrospective data access and navigation to prospective and proactive information delivery.
Data mining is ready for application in the business community because it is supported by three technologies that are now sufficiently mature:
Massive data collection and storage
Powerful multiprocessor computers
Data mining algorithms
Commercial databases are growing at unprecedented rates. The accompanying need for improved computational engines can now be met in a cost-effective manner with parallel multiprocessor computer technology. Data mining algorithms embody techniques that have existed for at least ten years, but have only recently been implemented as mature, reliable, understandable tools that consistently outperform older statistical methods.
In the evolution from business data to business information, each new step has built upon the previous ones. For example, dynamic data access is critical for drill-through in data navigation applications, and the ability to store large databases is critical to data mining. From the user's point of view, the four steps listed in Table 1 were revolutionary because they allowed new business questions to be answered accurately and quickly